ADE Exam, Spring 2021 Department of Mathematics, UCLA

1. Find and classify all of the equilibrium points of

$$
\begin{equation*}
\ddot{\theta}+b \dot{\theta}+\sin (\theta)=0 \tag{1}
\end{equation*}
$$

for all $b>0$, and plot the phase portraits for the qualitatively different cases.
2. Find the complete asymptotic series of the solutions to the equation

$$
\begin{equation*}
t^{2} \ddot{y}+t \dot{y}-\left(t^{2}+\nu^{2}\right) y=0 \tag{2}
\end{equation*}
$$

as $t \rightarrow \infty$. For what values of ν does the series terminate after finitely many terms?
3. The height $h(r, t) \geq 0$ of a spreading axisymmetric droplet obeys the following equation:

$$
\frac{\partial h}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r h^{3} \frac{\partial h}{\partial r}\right), \quad 0<r<L(t)
$$

along with the boundary condition $h(L(t), t)=0$ and volume constraint $\int_{0}^{L(t)} r h d r=1$. Here r is the distance from the center of the drop and $\{r \leq L(t)\}$ equals the support of the drop at time t.

Assume that h is a similarity solution of the form $h(r, t)=t^{\alpha} H\left(r / t^{\beta}\right)$ and $L(t)=\eta_{0} t^{\beta}$, and solve the differential equation to find the function H and the constants α and β explicitly. We assume that h is smooth in its support.

You should present an equation solved by η_{0}, though it is not necessary to solve for η_{0} explicitly.
4. A field $u:[0, \infty)^{2} \times[0, \infty) \rightarrow \mathbb{R}$ satisfies the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}
$$

with boundary conditions: $u=0$ on $x_{1}=0$ and $\frac{\partial u}{\partial x_{1}}=0$ on $x_{2}=0$.
Suppose that at $t=0$, the functions $u(\cdot, 0)$ and $\frac{\partial u}{\partial t}(\cdot, 0)$ are compactly supported on $\sqrt{x_{1}^{2}+x_{2}^{2}}<1$. Find the compact support for u at time t.
If you make use of results for the domain of dependence of a solution of the wave equation, then you should prove them.
5. Consider the conservation law

$$
\left\{\begin{array}{lll}
u_{t}+\left(u^{3}\right)_{x}=0 & \text { in } & \mathbb{R} \times(0, \infty) \\
u=g & \text { on } & \mathbb{R} \times\{t=0\}
\end{array}\right.
$$

We refer to entropy solutions as integral solutions which satisfy the Lax entropy condition.
(a) Find the entropy solution when

$$
g(x)=1 \text { for } 0<x<1, \text { otherwise } g=0 .
$$

(b) Find one integral solution of the above problem that is not an entropy solution.
6. Let $\Omega=\{|x|<1\} \subset \mathbb{R}^{n}$ and for given continuous functions $g(x)$ and $u_{0}(x)$, let u be a smooth solution of

$$
\left\{\begin{array}{lll}
u_{t}-\Delta\left(u^{2}\right)=0 & \text { in } \quad \Omega \times(0, \infty) \\
u=g & \text { on } \quad \partial \Omega \times(0, \infty) \\
u(\cdot, 0)=u_{0} & \text { in } \Omega
\end{array}\right.
$$

Let $0<g, u_{0}<1$. Show that $0<u<1$.
7. For a bounded domain Ω in \mathbb{R}^{n} and for

$$
u \in \mathcal{A}:=\left\{u \in C^{1}(\Omega) \text { with } u=0 \text { on } \partial \Omega \text { and } \int_{\Omega} u=1\right\}
$$

consider the energy

$$
E(u):=\int_{\Omega}\left[\sqrt{1+|D u(x)|^{2}}+|x|^{2} u(x)\right] d x
$$

where $D u(x)$ denotes the spatial gradient of u.
(a) Show that $E(u)$ has at most one minimizer among $u \in \mathcal{A}$.
(b) Let $\Omega=\{|x|<1\}$, show that the minimizer u^{*} in \mathcal{A}, if it exists, is radial, i.e. it depends only on the value of $|x|$.
8. The function $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ satisfies the equation:

$$
u_{t}+\frac{1}{2} u_{x}^{2}=0
$$

with initial condition: $u(x, 0)=\frac{1}{2\left(x^{2}+1\right)}$.
(a) Show that solution found by method of characteristics is only valid for a time interval $0 \leq t<T$. What is the value of T ?
(b) Derive a formula for $u(0, t)$ for all $t>0$.

